quaternion$500412$ - translation to german
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

quaternion$500412$ - translation to german

NUMBERS W + X I + Y J + Z K, WHERE W, X, Y, AND Z ARE COMPLEX NUMBERS, OR VARIANTS THEREOF, AND THE ELEMENTS OF {1, I, J, K} MULTIPLY AS IN THE QUATERNION GROUP
Complex quaternion; Complexified quaternion; Biquaternions

quaternion      
n. Viererspiel aus echten Zahlen die Komplexe Nummern beinhalten (Mathematik); Vierergruppe von Menschen oder Dingen

Definition

Versor
·noun The turning factor of a quaternion.

Wikipedia

Biquaternion

In abstract algebra, the biquaternions are the numbers w + x i + y j + z k, where w, x, y, and z are complex numbers, or variants thereof, and the elements of {1, i, j, k} multiply as in the quaternion group and commute with their coefficients. There are three types of biquaternions corresponding to complex numbers and the variations thereof:

  • Biquaternions when the coefficients are complex numbers.
  • Split-biquaternions when the coefficients are split-complex numbers.
  • Dual quaternions when the coefficients are dual numbers.

This article is about the ordinary biquaternions named by William Rowan Hamilton in 1844 (see Proceedings of the Royal Irish Academy 1844 & 1850 page 388). Some of the more prominent proponents of these biquaternions include Alexander Macfarlane, Arthur W. Conway, Ludwik Silberstein, and Cornelius Lanczos. As developed below, the unit quasi-sphere of the biquaternions provides a representation of the Lorentz group, which is the foundation of special relativity.

The algebra of biquaternions can be considered as a tensor product C H {\displaystyle \mathbb {C} \otimes \mathbb {H} } (taken over the reals) where C or C {\displaystyle \mathbb {C} } is the field of complex numbers and H or H {\displaystyle \mathbb {H} } is the division algebra of (real) quaternions. In other words, the biquaternions are just the complexification of the quaternions. Viewed as a complex algebra, the biquaternions are isomorphic to the algebra of 2 × 2 complex matrices M2(C). They are also isomorphic to several Clifford algebras including H(C) = Cℓ03(C) = Cℓ2(C) = Cℓ1,2(R),: 112, 113  the Pauli algebra Cℓ3,0(R),: 112 : 404  and the even part Cℓ01,3(R) = Cℓ03,1(R) of the spacetime algebra.: 386